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ABSTRACT 
On-line routing algorithms deal with requests as they arrive 
without assuming any knowledge of the underlying process that 
generates the streams of requests.  By contrast, off-line traffic 
engineering algorithms assume complete statistical knowledge of 
the request generating process.  This dichotomy, however, 
oversimplifies many practical situations when some incomplete 
information on the expected demands is available, and proper 
utilization of the available information may improve the network 
performance.  This paper proposes a game theoretic framework 
for robust traffic engineering intended to guard against the worst 
case scenario with respect to possible uncertainties in the external 
demands and link loads.  The proposed framework can be 
interpreted as a game of the routing algorithm attempting to 
optimize the network performance and the adversarial 
environment attempting to obstruct these efforts by selecting the 
worst case scenario with respect to the uncertainties.  Two 
different classes of schemes are considered: first, suitable for 
MPLS implementation, centralized schemes, and, second, suitable 
for OSPF-OMP implementation, decentralized schemes.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: – modeling techniques, 
performance attributes, reliability, availability, and serviceability. 

General Terms 
Algorithms, Management, Performance, Design, Theory. 

Keywords 
Uncertain demand, traffic engineering, robustness, game theoretic 
framework, equal cost multi-path, stability, MPLS, OSPF-OMP. 

1. INTRODUCTION 
Consider a network whose performance is characterized by the 
following penalty function: 
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where  the total flow carried on a link l  is 
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the flow carried on a route r  is rx , the capacity of a link l  is 

lc , and function )( llF λ  characterizes penalty associated with 

carrying load lλ  on link l .  Traffic flows )( rxx =  satisfy the 
following conservation conditions: 
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where the set of feasible routes with origin-destination ),( ji  is 

ijR , and the matrix of external demands is )( ijµµ = .  Given, 

µ , the optimal vector of traffic flows *xx =  minimizes the 
total penalty (1): 
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subject to constraints (1)-(3) [1].  We assume that functions lf  
are monotonously increasing and convex: 
                          0)()( >= λλλ ddfd ll ,                         (5) 
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),0[ ∞∈∀λ , and problem (1)-(4) has at least one feasible 
solution.  These assumptions imply that the optimization problem 

(1)-(4) has unique optimal solution *x , no other locally optimal 

solution exists, and solution *x  can be characterized in terms of 
the link costs (5) as follows [1].  A set of path flows is optimal if 
and only if the flows are positive on feasible paths of minimum 
cost, where the cost of a path is a sum of the costs of the links 
comprising this path: 
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This characterization implies that at the optimum, the paths along 
which the input flow is split must have equal costs and equal to 
the minimum cost of all feasible paths with the same origin-
destination (equal cost multi-path). 
 Characterization of the optimal routing in terms of the link 
costs suggests assigning link weights )( lww =  in the Open 
Shortest Path First (OSPF) routing protocol as follows: 
                                      )( lll dw λ=                                     (8) 
Link weight assignments (8) can be used for adaptive OSPF 
implementation, with link loads lλ  estimated from the  real-time 

measurements.  If the demand matrix )( ijµµ =  is fixed and 

known, off-line implementation of OSPF can be based on the pre 

computed "optimal" link weights )( **
lll dw λ= , where the 



average link l  load is ∑
∈

=
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**λ , and the optimal traffic 

assignment *x  is determined by the solution to the optimization 
problem (1)-(4). 
 In many practical situations available information on the 
demand matrix )( ijµµ =  can be more reliably quantified in 

term of the “confidence region” M∈µ  rather than point 

estimate µµ ~≈ .  Following [2] we approximately assume that 
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We will refer to sµ  as scenarios, and interpret polyhedron (9) as 

a mixture of these scenarios with weights )( sγγ = . 
 This paper proposes a game theoretic framework for 
robust traffic engineering intended to guard against the worst-case 
scenario with respect to possible uncertainties.  Characterization 
of the external demands µ  in terms of the region M∈µ  may 
be a source of such uncertainty.  For an adaptive minimum cost 
routing unavoidable small variations in the link costs may, in a 
situation of equal cost multi-path, cause significant variations in 
the load allocation, and thus contribute to uncertainty in the link 
loads.  The proposed framework can be interpreted as a game of 
the routing algorithm attempting to optimize the network 
performance and the adversarial environment attempting to 
obstruct these efforts by selecting the worst case scenario 
conditions.  Two classes of schemes are considered:  first, suitable 
for MPLS implementation, centralized schemes, and, second, 
suitable for Optimized Multi-Path OSPF (OSPF-OMP) 
implementation, decentralized schemes.  

2. CENTRALIZED SCHEMES 
Broadly speaking, there are two possible frameworks for decision 
making under uncertainty.  The Bayesian framework [3] is 
concerned with the "average" performance by assuming that 
uncertain parameters follow some probability distribution.  

Proposed in [2] approach to OSPF link costs (weights) *ww =  
optimization under uncertain demands (9) by minimization of the 

aggregate penalty sFF Σ=Σ , where penalty sF  corresponds 

to scenario sµµ = , Ss ,..,1= , lies within the Bayesian 

framework, since criterion ΣF  is, in effect, a result of averaging 
of the penalty (1) with respect to a random matrix µ  over 

probability distribution Ss 1)Pr( == µµ .  This approach, 
however, may not be adequate if one is concerned with the worst 
rather than average case scenario performance. 
 Robustness concerns can be addressed within game theoretic 
framework [4] by identifying the routing pattern that minimizes 
the worst-case scenario losses in performance, i.e., regrets, due to 
the uncertainties.  A routing protocol is not capable of controlling 
the flows )( rxx =  under uncertain external demands 

M∈µ , but hopefully capable of controlling the fractions of 

the offered load µ  to be carries on feasible routes )( rξξ = , 
where 

                           ijrr x µξ = , ijRr ∈                              (10) 

Consider penalty (1) as a function of the fractions ξ  and the 

external demands µ : )( µξFF = .  The loss (regret) resulted 

from optimization of the routing algorithm for scenario js =  

while the actual scenario is is =  can be characterized by  

                    )()( iiij
ij FFL µξµξ −= ,                     (11) 
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ijRr ∈   are optimized for scenario Ss ,..,1= .  Consider a 

two player, zero sum game of the routing algorithm attempting to 
minimize loss (11) by selecting Sj ,..,1= , and adversarial 
environment attempting to maximize loss (11) by selecting 

Si ,..,1= .  Let jα  be the optimal, generally mixed, strategy 

for the routing algorithm.  It is natural to interpret the weighted 
sum 
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as a robust load allocation scheme guarding against the worst case 

mixture ∑
j

j
jµβ  of scenarios Sii ,..,1, =µ , where iβ  is 

the optimal, generally mixed, strategy for the environment. 
 Allocation (12) requires ability to arbitrarily split traffic 
among feasible routes.  In practice it can be achieved in MPLS 
network by randomization of the routing decisions at the packet 
level.  However, it is often desirable to allocate a single route for 
the entire flow.  According to the routing optimality principle, the 
load should be carried on a minimum cost routes.  The following 
game theoretic interpretation G  provides natural extension of 
this optimality principle to a situation of uncertain external 
demands.  Consider a non-cooperative game G  of all origin-
destination pairs ),( ji  and the adversarial environment.  Each 

pair ),( ji  attempts to minimize the excessive, relatively to the 
minimum, cost of the route 
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by selecting a feasible strategy ijRr ∈ .  The adversarial 

environment attempts to maximize the aggregate excessive cost 
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by selecting a feasible strategy M∈µ .  Note that a mixed 
routing strategy in this game can be interpreted as traffic split at 
the flow as well as packet level.  In a typical situation when each 
flow occupies a small portion of a link capacity, splitting traffic at 
the flow and packet levels produce similar results.  



3. DECENTRALIZED SCHEMES 
The game theoretic interpretation of the optimality principle G  
can serve as a starting point for developing off-line as well as on-
line decentralized, robust traffic engineering schemes.  Given 
fractions (10), uncertainty in the expected demands M∈µ  
induce uncertainty in the link weights 
                                  ],[ lll www )(∈                                     (15) 
where 
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and function )(λld  is given by (5).  Assume that vectors 

)( lww (( =  and )( lww )) =  are fixed, and consider a problem 

of selection of the shortest feasible path ijRr ∈  in a weighted 

graph with uncertain link weights (15).  It is natural to formalize 
this problem as a game ijg  of the routing algorithm attempting 

to minimize the excessive, relatively to the minimum, route cost 
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by selecting a feasible strategy ijRr ∈ , and the adversarial 

environment attempting to maximize cost (18) by selecting a 
feasible strategy (15). 
 In a case of off-line routing the target fractions (10) in (16)-
(17) are determined off line, for example, using one of the 
procedures described in the previous section of the paper.  In a 
case of on-line, adaptive routing bounds (10) are based on the 
real-time measurements.  Given bounds )( lww (( =  and 

)( lww )) = , the robust traffic split for origin-destination ),( ji  
is determined by the optimal, generally mixed, routing strategy in 
the game ijg .  Note that this optimal routing solution is based on 

two metrics per link lw(  and lw) , and thus can be implemented 
with OSPF-OMP routing protocol [5]. 
 In conclusion, briefly discuss stability of the routing resulted 
from solutions to the games ijg .  If the optimal solution to the 

load allocation problem (1)-(4) does not split traffic, this optimal 
solution can be implemented with OSPF routing protocol based 
on the corresponding “optimal” link weights.  If, however, the 
optimal solution splits traffic among feasible routes, a situation of 
equal cost multi-path occurs due to the route optimality principle.  
This situation is typical for moderately and heavily loaded 
networks with multiple feasible routes since the minimum cost 
routing increases load on the minimum cost route until the 
admission strategy takes over or a situation of equal cost multi-
path occurs.  It is usually assumed that OSPF splits traffic equally 
among minimum cost feasible routes.  The problem of adaptive 
OSPF implementation is routing instability (route flapping) [6] 

due to abrupt changes in the load allocation resulted from small 
changes in the link weights in a situation of equal cost multi-path.  
From the game theoretic perspective the route flapping instability 
can be viewed as an attempt of the minimum cost routing 
algorithm to solve the corresponding game in pure strategies or 
strategies describing equal split among some routes.  The game 
theoretic framework provides a natural guiding principle for 
regularization of the otherwise ill posed problem of route cost 
minimization in a situation of equal cost multi-path [7].  We 
currently investigate a problem of global stability of the OSPF-
OMP routing protocol splitting traffic according to the optimal 
mixed routing strategy ),( wwpr

)(
 in games ijg  for a case 

when information on the current fractions ξ  and feasible 

demands M  is available to the routers.  In this case the 
performance of the corresponding OSPF-OMP routing protocol 
can be described by equations (16)-(17) supplemented with   
                                 ),( wwprr

)(=ξ                                    (19) 
Other directions of future research include relation between 
centralized and decentralized game schemes, as well as 
developing computationally feasible algorithms for solving 
corresponding games.  Solutions for some particular cases have 
been obtained in [8]-[9]. 
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